Plasmin-coated borrelia Burgdorferi degrades soluble and insoluble components of the mammalian extracellular matrix.

نویسندگان

  • J L Coleman
  • E J Roemer
  • J L Benach
چکیده

Borrelia burgdorferi, the spirochetal agent of Lyme disease, binds plasminogen in vitro. Exogenously provided urokinase-type plasminogen (PLG) activator (uPA) converts surface-bound PLG to enzymatically active plasmin. In this study, we investigated the capacity of a B. burgdorferi human isolate, once complexed with plasmin, to degrade purified extracellular matrix (ECM) components and an interstitial ECM. In a modified enzyme-linked immunosorbent assay using immobilized, soluble ECM components, plasmin-coated B. burgdorferi degraded fibronectin, laminin, and vitronectin but not collagen. Incubation of plasmin-coated organisms with biosynthetically radiolabeled native ECM resulted in breakdown of insoluble glycoprotein, other noncollagenous proteins, and collagen, as measured by release of solubilized radioactivity. Radioactive release did not occur with untreated spirochetes or spirochetes treated with uPA or PLG alone. Kinetic and inhibition studies suggested that the breakdown of collagen was indirect and due to prior disruption of supportive ECM proteins. B. burgdorferi is an invasive bacterial pathogen that may benefit by use of the host's plasminogen activation system. The results of this study have identified mechanisms in which the spirochete can use this borrowed proteolytic activity to enhance invasiveness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The outer surface protein A of the spirochete Borrelia burgdorferi is a plasmin(ogen) receptor.

The spirochete Borrelia burgdorferi is the causative agent of Lyme borreliosis (Lyme disease) and is transmitted to mammalian hosts by tick vectors. In humans, the bacteria induce a complex disease, which involves the skin, joints, heart, and nervous system. However, the pathogenic principles of this multisystem illness are far from being understood. To disseminate from the site of the tick bit...

متن کامل

Borrelia burgdorferi infection-associated surface proteins ErpP, ErpA, and ErpC bind human plasminogen.

Host-derived plasmin plays a critical role in mammalian infection by Borrelia burgdorferi. The Lyme disease spirochete expresses several plasminogen-binding proteins. Bound plasminogen is converted to the serine protease plasmin and thereby may facilitate the bacterium's dissemination throughout the host by degrading extracellular matrix. In this work, we demonstrate plasminogen binding by thre...

متن کامل

Borrelia burgdorferi Enolase Is a Surface-Exposed Plasminogen Binding Protein

Borrelia burgdorferi is the causative agent of Lyme disease, the most commonly reported arthropod-borne disease in the United States. B. burgdorferi is a highly invasive bacterium, yet lacks extracellular protease activity. In order to aid in its dissemination, B. burgdorferi binds plasminogen, a component of the hosts' fibrinolytic system. Plasminogen bound to the surface of B. burgdorferi can...

متن کامل

Bacterial plasminogen activators and receptors.

Invasive bacterial pathogens intervene at various stages and by various mechanisms with the mammalian plasminogen/plasmin system. A vast number of pathogens express plasmin(ogen) receptors that immobilize plasmin(ogen) on the bacterial surface, an event that enhances activation of plasminogen by mammalian plasminogen activators. Bacteria also influence secretion of plasminogen activators and th...

متن کامل

Borrelia burgdorferi BmpA is a laminin-binding protein.

The Borrelia burgdorferi BmpA outer surface protein plays a significant role in mammalian infection by the Lyme disease spirochete and is an important antigen for the serodiagnosis of human infection. B. burgdorferi adheres to host extracellular matrix components, including laminin. The results of our studies indicate that BmpA and its three paralogous proteins, BmpB, BmpC, and BmpD, all bind t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 67 8  شماره 

صفحات  -

تاریخ انتشار 1999